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SUMMARY

A three-dimensional, time-dependent, anelastic model is employed to simulate the evolution of nonlinear
internal waves which are forced by stratified low over isolated topography. Both two-dimensional and three-
dimensional flows are considered. In the former case the discussion focusses upon the development of the wave
field induced by a uniform mean flow with constant stability. The full three-dimensional model 15 employed to
study the nonlinear development of atmospheric ‘ship-waves’ which have recently been abserved in satellite
photographs to the lee of oceanic islands in the Norwegian and Barents seas. The model ts able to reproduce
the characteristics of the observed wave patterns rather nicely when 1t is initialized with vertical profiles of wind
and stability obtained through upper air ascents from stations located on the islands themselves. Detailed
comparisons of the output of the nonlinear model with the results of three-dimensional linear steady state

theory are also provided. As is found to be the case in two-dimensional analyses, linear theory may considerably
underestimate the forced wave amplitude for symmetric topographic excitation.

I. INTRODUCTION

In the past several years considerable new work has been undertaken on the old
problem of internal waves forced by stratified flow over isolated topography. Motivation
for this work has been provided by the recognition that such disturbances may be of
crucial importance in understanding dynamical phenomena on a wide range of spatial
scales. On the planetary scale, it has been suggested by Lilly (1972), based upon work by
Sawyer (1959) and Bretherton (1969), that the drag exerted on the mean flow through the
absorption of internal wave momentum flux could be the missing ingredient in the GCM
which 1s required to explain why such models characteristically overpredict the strength
of the mid-latitude jet stream. On the mesoscale, one direct stimulus to the revival of
interest in these waves has been the recognition of their importance in the dynamics of
severe downslope windstorms. Klemp and Lilly (1975) and Peltier and Clark (1979) have
formulated alternative theories for the generation of such storms which are nevertheless
both based upon the dynamics of internal waves. Even on the intermediate synoptic scale,
the field of internal waves launched by topography might exert considerable influence on
occasion. For example, the mechanism of lee cyclogenesis as described by Buzzi and
Tibaldi (1978) and Steinacker (1979) appears to involve an initial slowing down of the
cold front as it crosses the Alps (for example), which is followed by development of the
upper-level trough prior to lee cyclone formation. It might be expected on the basis of the
wave mechanical ideas discussed in Peltier and Clark (1979) that the internal wave field
could play some role in the upper-level development.

The ALPEX experiment, which was conducted in the European Alps from 1 Septem-
ber 1981 to 30 September 1982, had among its objectives the collection of a detailed
observational data set which can be employed to investigate the above mentioned pro-
cesses. This geographic location 1s ideally suited to such an experiment both because of
the high frequency of occurrence of lee cyclogenesis (the Genoa cyclone) and because of
the frequency of local downsiope windstorm occurrence (fohn, bora). The theoretical
assimilation of the data which this experiment has produced will doubtless require the
application of a wide variety of numerical models, optimally designed for the investigation
of processes on various temporal and spatial scales. On the smallest temporal and spatial
scales which are involved in downslope windstorm processes, non-hydrostatic effects are
important and must be incorporated in the model if it is to be able to support, for
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example, the vertical trapping of internal waves with horizontal spatial scales on the order
of 10km or so.

In the present paper we wish to describe a sequence of initial experiments with the
nonlinear, non-hydrostatic, three-dimensional model which we intend to later apply to the
analysis of ALPEX data. These experiments are designed to test the model against obser-
vational data in which the internal wave response to the topographic forcing is sufficiently
simple geometrically that meaningful comparisons may be made. The data set which we
have elected to investigate concerns a sequence of ship-wave patterns which were
observed using the NOAA 5 satellite in the lee of islands in the Norwegian and Barents
seas. The nature of the topographic forcing here ensures a relatively uncomplicated geo-
metric response which may be simply compared to model output and which 1s of some
intrinsic physical interest. The atmospheric analogue of the diverging and transverse
patterns of surface gravity waves attached to a ship moving through deep water is
supported by the topographic excitation of ‘leaky’ internal wave normal modes. Since the
existence of such modes is entirely a consequence of non-hydrostatic effects, a test of the
ability of the numerical model to reproduce observations of them constitutes a good test
of the model’s design.

In section 2 we provide a brief description of the structure of the time-dependent
nonlinear numerical model and also of the linear steady state calculation which we have
developed for comparison purposes. Section 3 is concerned with the discussion of a
sequence of two-dimensional nonlinear simulations of the wave field launched in flows
with uniform wind and stability, These calculations are intended to illustrate and to
extend our previous results for circumstances in which no trapped wave exists but in
which the nonlinear wave is of such large amplitude that it *breaks’. Section 4 describes
the observed ship-wave patterns and our simulations of them using both linear and
nonlinear models. Concluding remarks will be found in section 5.

2. THE MODELS

(@) The nonlinear time-dependent model

The basic characteristics of the three-dimensional hydrodynamic model are described
in detail in Clark (1977) and alterations of this code which have been made to fit specific
requirements of the simulation of two-dimensional internal waves are discussed in Clark
and Peltier (1977) and Peltier and Clark (1979). The model is anelastic and therefore
based upon the following form of the continuity equation which guarantees, by neglect of
the local time derivative of the density field, p, complete filtering of sound waves from the
model system:

V- (pu) = 0. | (1)

Here u is the velocity field and p(r) is the initial density field which is taken as a
hydrostatic function of height only. The momentum equation in the anelastic approx-
imation 18
pdufdt = —Vp —p'g + V-1 (2)
in which p’ and p’ are pressure and density fluctuations respectively such that
p = p(z) + plr.t)
p = p(z} + p'lr, f)}
and dp/dz = —pg. (3b)
The deviatoric stress tensor 1 in Eq. (2) is obtained from
Ty = E"Kmﬂij (4)

(3a)
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in which the deformation tensor is

with K, = (kA*|DEF|(1 —- R)Y?,  for Ri<1 } (5b)
= K, (small), for Ri > 1
where (DEF)? = 4D?, + D3, + D%,) + D%, + D3, + D2,. (5¢)

Equations (1) and (2} are completed with an equation for conservation of internal energy
in the form

pdbjdt = V-H (6)
m which 6 is the potential temperature and H is the heat flux vector defined by
H = pK, V0. (7N

We always assume K, /K, =1 and therefore that the eddy Prandtl number is unity.
Equation (5b), which defines the eddy mixing coefficient for momentum, constitutes a
first-order closure for the diffusive effects of turbulence in terms of the resolved fields.
Although this 1s in no sense rigorous it does allow us to include mixing effects due to
small-scale ‘breaking’ {convective instability) of a nonlinear wave when these small-scale
effects are not fully resolved in the finite difference model. The connection between the
thermodynamic fields p, p, € is provided by the ideal gas equation of state and the
definition of potential temperature, linearization of which gives

p'= —pl/a+ p'fc? (8)

where ¢ = yRT is the square of the adiabatic sound speed. The current version of the
model has the background state p, p, T, # determined by upwind rawindsonde data.

If one could usefully describe the phenomena of interest using a model written in
Cartesian coordinates, the solution of Egs (1), (2), {6} and (8) would be quite straightfor-
ward using well-established finite difference techniques. It is not possible to describe
accurately the air flow over smooth topography in this fashion, however, and so we are
obliged to employ a terrain-following coordinate system for the non-hydrostatic equa-
tions. We use the transformation

H{Z - zs(xn y)}/{H _ zs(xay)} *

to map the rectangular domain with bottom topography z{x, y) into a regular parallelo-
piped. In Egs. (9) H is the height of the numerical domain so that the coordinate system
becomes Cartesian at this height. The analytic form of the model equations in the trans-
form domain are given in Clark and Peltier (1977) and their numerical forms appear in
Clark (1977). The model is time-stepped in the transform domain using second-order-
accurate differencing and the transform domain solutions are inverted to physical space
for analysis. Full numerical details will be found in the previously cited references.

=1
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(b) A spectral approach to the construction of linear steady state solutions

In Peltier and Clark (1979) we described a two-dimensional linear steady state model
which was employed for comparison with output from corresponding nonlinear time-
dependent analyses. That model was based upon a so-called multiple layer method in
which the background atmosphere was approximated by a stack of layers in which the
wind and temperature were assumed constant. Although such models are adequate for
many applications they are by no means perfect and we have elected to do the linear
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calculations to be reported here in a completely different manner. Retaining the full effects
of compressibility for purposes of this linear analysis, the hydrodynamic fluctuations from
the hydrostatic basic state (p, p, T), in which the wind field, U, = (U, V, 0) with U and V
functions of z only, are governed by the following perturbation equattons

dulot + U oufex + V ou/dy + w 8U/dz = —(1/p) op'/ox (10a)
ov'/ot + U av'fox + V dv'fdy +w oV/iez = —(1/p) op'/Cy {10b)
aw'/ot + U ew'/éx + V éw'/dy = —{(l/p) cp'/iz — p'g/p (10c)

dp'/it + U 8p'jdx + V 8p'foy + wdpfdz + (0u'{dx + dv'/8y + éw'/dz) =0 (10d)
ép'/ot + U op'/ox + V ¢p'/dy + w'op/oz —
— ¥ @p'fot + U dp'féx + V dp'/éy + w Op/dz) = 0. (10e)

Solutions to Eqs. (10) are constructed using a spectral method by decomposing each of
the hydrodynamic fields W' into horizontal wavenumber and temporal frequency spectra
through introduction of the three-dimensional Fourier integrals

Wik, I, z, )= v[,” dx dy dt exp! —i(wt — kx — ly)} ¥(x, y, z, 1) (11a)

Wix, y,z,t) = {(2rn)° '”T dk dl do expi{i{wt — kx — Iy)} W'(k, 1, z, w}, (11Db)

the integrals running from — oo to + co. Substitution of expansions of the form (11b) for
each of the perturbation fields in (10) reduces this set of linear p.d.e.s to a set of coupled
o.d.e.s for the complex spectral amplitudes Wk, I, z, ). From this set of coupled o.d.e.s
we may eliminate all the spectral amplitudes but one, say that for the vertical component
of the velocity perturbation, w'(k, I, z, w). This leads to a onc-dimensional second-order
o.d.e. which is analysed in detail in Simard and Peltier (1982). That paper also provides a
detailed description of the numerical methods employed to reconstruct the linear steady
state wavefield.

3. LARGE AMPLITUDE MOUNTAIN WAVES IMN TWO DIMENSIONS

Our purpose in this section is to explore certain properties of highly nonlinear
mountain waves in two dimensions. In Peltier and Clark (1979), we presented several
nonlinear, time-dependent solutions for stratified flow over bell-shaped topography in an
attempt to understand the detailed wave mechanical processes involved in the severe
downslope windstorm which occurred at Boulder, Colorado on 11 January 1972. These
calculations clearly established the importance of the breaking gravity wave to the
dynamics of this event (also see Peltier and Clark 1980). One of the preliminary flows
discussed in Peltier and Clark (1979) (and in Clark and Peltier 1977) was for the simple
case of constant background wind and stability. For this example it proved to be rather
difficult to separate the effects due to wave breaking from the effects due to the nonlhin-
earity of the lower boundary condition. Qur calculations did, however, show a significant
departure from an approximate version of Long’s model and since this model is supposed
to account exactly for the effect of the nonlinear lower boundary condition we did find
some indication that effects due to wave breaking could be quite important even m the
simplest flows. Qur intention here is to demonstrate in an unambiguous way that the
same self-induced resonance invoked to account for downslope windstorms in more com-
plicated models also seems to occur in flows with constant background wind and stabulity.
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(a) Design of the numerical experiments

In order to separate boundary condition from breaking wave effects we have per-
formed a sequence of numerical experiments which are somewhat different from those
described in Peltier and Clark (1979). With u and w the horizontal and vertical com-
ponents of the flow velocity, we previously employed the conditions

u=U, and Jw/dx = 06/0x =0 (12}

at the inflow boundary of the two-dimensional domain. In the present experiments Egs.
(12) have been replaced by

® = By(2)
w=0 > (13)
u = ut). ‘

The time dependence of u = uft) at the inflow boundary is determined wvsing a modifi-
cation of the extrapolation scheme of Orlanski (1976) in which the tendency of u is taken
proportional to

Au=u"1 — = (1 — ) Au* + (U, — u*™ 1), (14)

in which Au* 1s determined using the Orlanski scheme. The choice ¢ > 0 in (14) limits the
memory at the inflow boundary by continually forcing the solution back towards the
initial state. If the internal forcing associated with upstream propagating modes changes
scale with time then (14) allows the inflow boundary to adjust. A value of ¢ = 0-025 was
employed in all the experiments to be described 1n this section. It is important to note
that upstream blocking should not be important in any of the flows to be considered here
since Uy > Nz, ...

The main new feature of these experiments is that they are designed to investigate the
response of the model to accelerations and decelerations of the fluid flowing through the
upstream -boundary. As we will show, such analyses will allow us to separate breaking
wave from boundary condition effects. In order to impose such an acceleration we modify
(14} for the period of flow transition to the form

Au— Au+ g AU, (15)

in which AU, 1s the desired net change in the mean flow speed U, and g is selected such
as to make acceleration constant over the transition period. When (15) is applied to the
elliptic pressure equation (see Clark and Peltier 1977) the flow transition is smooth and
the governing equations are satisfied at all times in the domain interior.

(b} Description of the two-dimensional experiments

In all the experiments to be discussed here we have employed bell-shaped topog-
raphy z, given by

z(x) = ha*/(x* + a?) (16)

with h = 400m and a = 3km. The static stability § = d(In ,)/dz = 10" "m™! is fixed,
which implies a Brunt-Viisila frequency N = 0-99 x 10 *s™! with corresponding period
Ty = 10-57 min. If the low were hydrostatic then we know that flow over the obstacle
would generate internal waves with vertical wavelength A, = 2zU,/N. This vertical wave-
length is 2-54km for Uy =4ms™' and 317km for Uy, = 5ms™*. Miles and Huppert
(1969) have shown that so long as the Froude number Fr = AN/U, is in the range
0 < Fr < (-85 then the imternal waves generated by flow over the bump will not be

supercritically steepened (1.e. will not break). Their calculation includes the full effect of
the nonlinear lower boundary condition as it is based upon Long's model. Since the
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choice U, = Sms ™! gives Fr = 0-7924 and the choice U, = 4ms™! gives Fr = 0-9905 it
is quite clear that the former case will be subcritical and the latter case supercritical with
respect to wave breaking.

Since the model which we employ has the capacity to trace the evolution of the flow
in response to an acceleration we are thus able to investigate the transition between these
two states, What we shall do is to set up a steady wave field in the subcritical state with
U, =5ms ! and then decelerate to 4 ms ™!, which will induce wave breaking. As we will
show this leads to a marked increase of the surface wave drag in circumstances in which
Long’s model predicts that the drag should decrease. It is in this way that we are able to
distinguish effects due to the nonlinear lower boundary condition which are contained in
Long’s model and effects due to wave breaking.

QOur computations of surface wave drag in these experiments have been done using
the expression

+ o
D (0} = —f p'(0z /0x) dx (17)
in which p’ i1s the pressure perturbation and z, is the topography as before. In Clark and
Peltier (1977) our calculations of the interior Reynolds stress profile did not match the
wave drag at the ground given by (17) as they should have done. In that paper we
calculated Reynolds stress as a function of height by linearly interpolating p, #' and w'
separately to common height levels prior to horizontal averaging to obtain {pu'w’). An
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Figure 1. Schematic of the numerical domain. Note the presence of the region of viscous ahsorption adjacent
to the upper boundary.
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artifact of this approach i1s the 3 Az anomalous structure in {pu'w")> near the surface and
the mismatch with Eq. {(17). Here we have alleviated this problem by first calculating puw
on the transformed grid and then interpolating to constant height levels to obtain
(pu'w') = {puw) — pUW with U = {u) and W = {w). This procedure has solved the
previous problem of the mismatch between the interior wave momentum flux and the
surface wave drag.

In Fig. I we illustrate the domain in which the numerical experiments to be described
In this section have been performed. Before discussing the main sequence of calculations it
1s important to understand in advance one characteristic of the general class of simula-
tions with accelerated mean flows. This involves the sensitivity of the final wave states to
high frequency noise generated during mean flow acceleration and the dependence of the
amplitude of this noise on the time scale over which the acceleration occurs. In {a) and (b)
of Fig. 2 we show vertical velocity fields for two experiments after an integration time of
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Figure 2. Vertical velocity fields at ¢+ = 100 min for experiments 29, (a), and 30, (b). The contour intervals are
0:3125ms ™! and 0-1562ms ' in (a) and (b) respectively. Solid contours denote positive values and dashed
contours denote negative values.

100 min. Both these experiments investigate the wave fields generated by mean flows of
strength U, = Sms™* but differ in the time scale over which this steady mean flow is
established from the initial state of rest. In Fig. 2(a) the mean flow acceleration takes place
over a time 10 At = 0:24 t, whereas in Fig. 2(b} the acceleration time is 200Ar = 4-73 .
As llustrated 1n Fig. 2 the final wave states for the case with rapid initial acceleration are
strongly contaminated by high frequency noise whereas the simulation with more gradual
acceleration is free of such undesirable influence. In order to suppress the generation of
undesirable high frequency noise in experiments with accelerated mean flow, acceleration
periods are constrained to be significantly in excess of the buoyancy period, 5. Figure 3
provides a further illustration of this in the form of histories of surface wave drag com-
puted from Eq. (17) for the same two experiments, Curve 30 is the drag curve for slow
acceleration; curve 29 for rapid acceleration. The latter shows clear evidence of the high
frequency noise generated during startup, which obviously persists through the integra-
tion period. Both experiments were conducted on a finite difference grid with dimensions
136 Ax by 92 Az with Az = 158-6m and an overhead absorber depth of 40 Az. Figure 4
illustrates the temporal evolution of the Reynolds stress profile for this flow with slow
startup but with 192 vertical gridpoints, Az = 79-3m, and an overhead absorber depth of
80 Az. Such data are typical of all model runs with the model running in subcritical
conditions (in this case Nh/U, = 0-792) and shows that in the long-time limit the Rey-
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Figure 3. Surface wave drag as a function of time for experiments 29 and 30. Note the high frequency noise
contaminating the drag curve for experiment 29 which is produced by the shock startup.

Y A ——
381
1256 |-
1130 |-
004 |
879 L —— ——_ Absorber
753
6.28

502
37T

Z (km)

25|
126
000 I T N A W Y |

| LI A A A T I L

REYNOLDS STRESS

Figure 4. Reynolds stress profiles for experiment 37. The arrow shows time progressing and individual profiles
are drawn at 20 min intervals. Note that the concentrated group of profiles, which are for the latest time shown,
are characterized by nearly constant Reynolds stress in the region beneath the viscous absorber.

nolds stress profile becomes constant in the region benecath the viscous absorber as
expected on the basis of the Eliassen—Palm theorem.

Of the several new experiments which have been conducted to investigate the impor-
tance of wave breaking by decelerating a subcritical mean flow into the supercritical
regime we will describe two examples here. In both experiments, 34 and 36, we first
accelerated the mean flow from 0 to Sms™ ! over a time of 50 min, kept the mean flow
constant in this subcritical state until elapsed time ¢t = 135min, and then decelerated to
U, =4ms ! The two experiments differ only in vertical resolution. Exp. 34 has 97
vertical gridpoints and Az = 153-6m while Exp. 36 has 192 vertical gridpoints and
Az = 79-3m. Figure 5 shows D (0) v. t for these two experiments and illustrates the
fact that wave drag increases dramatically in the supercritical state (U, = 4ms™") even
though Long’s model, and linear theory, predict that the drag should decrease. Inspection
of the figure shows that this effect is only enhanced by increasing the vertical resolution of
the numerical model.
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Figure 5. Plots of the surface wave drag D, (0) as a function of time for experiments 34 and 36. These plots
illustrate the marked increase of wave drag which 1s produced when the internal wave 1s forced to break. The
strength of the mean flow Uf) is also shown on this figure for convenience. The breaks in the drag curves

correspond to the time during which the flow is decelerated from a subcritical speed of Sms™! to the super-

critical speed of 4ms™ !,

Insight into the nature of the dynamical processes which support the transition from
the low drag subcritical state, in which Long’s model provides an adequate description of
the flow, to the high drag state in which Long’s model 1s completely inadequate 1s
provided by Fig. 6. This shows a time sequence of interior Reynolds stress profiles for the
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Figure 6. Compostte Reynolds stress profiles for expenments 34, {a), and 36, (b). Note the sharp hinge at

height z = 34,/4. Time increasing is shown by the arrows on the boitom of each plate. The first profile drawn in

each case is at time ¢ = 230 min. The vertical line in each frame represents the critical Reynolds stress associated

with a mountain height {forcing) just sufficient to cause the streamlines to steepen to vertical. The sharp stress
drop above about 8-8 km altitude is due to the presence of the viscous absorber.

low resolution calculation, (a), and the high resolution calculation, (b). These profiles all
match the corresponding D _{0) at the surface and have been drawn at 10-minute intervals
beginning at ¢ = 230min. The important feature to note in both these sequences of
profiles 1s the sharp ledge which develops at a height z which is precisely a distance 34,/4
above the ground, where 4. 1s the vertical wavelength of the field of internal waves. As
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shown in Peltier and Clark (1979) this is the height at which critical steepening first occurs
and streamlines overturn. Systematic analysis of the streamfield data shows it 1s following
the time at which cnitical steepening first occurs that the Reynolds stress profile begins to
diverge strongly in the region between the ground and the height 3/_/4. After supercritical
steepening of the internal wave occurs the momentum flux above the steepening level,
3/_/4, remains constant but beneath this level it diverges strongly. This is not in accord
with the predictions of the Eliassen—Palm theorem but this theorem holds only for small
amplitude steady state disturbances. Our interest here 1S in those large amplitude
unsteady processes which occur in consequence of wave breaking,

The numerical data shown in Fig. 6 clcarly imply that all wave encrgy mncident [rom
below on the level 34_/4, and in excess of that required to keep the streamlines at critical
steepness, 1s not transmitted through this level. The vertical lines drawn at D (0} = —0-45
kgs™? on both (a) and (b) thus represent the drag calculated from Long’s model for the
critical state in which Fr = (0-85. Wave energy reflected from the critical height is trapped
in the cavity between this level and the ground with the total disturbance in this region
growing continuously as a function of time. In a sense the field of internal waves seems to
excite a ‘self-resonance’ when it is forced to exceed supercritical steepness. Precisely how
this mechanism operates remains somewhat obscure. Qur inability as yet to describe the
process in terms of an analytically tractable model does not, however, detract at all from
the importance of the process itself. It is exactly this process which we were obliged to
invoke in Peltier and Clark {1979) to understand the ability of our model to reproduce the

observations of the 11 January 1972 severe downslope windstorm at Boulder, Colorado.
A semi-quantitative understanding of the proposed resonant amplification process

may be gained through the following argument. Assume that a certain basic wave dis-
turbance of precisely critical amplitude has been established over the mountain and that
this disturbance is essentially hydrostatic. The critical amplitude is that which leads to a
streamline which is precisely vertical at the first steepening level. This steady state dis-
turbance may be calculated from the hydrostatic version of Long’s model or using the
finite difference code, the main point being that the effect of the nonlinear lower boundary
condition is included. Suppose that the height of the mountain is now increased from the
critical height, h_, to a new height s with all other parameters of the model fixed. We
enquire as to the slow time scale transient evolution of the additional disturbance under
the assumption that it is perfectly reflected from the critical region at height 34,/4. Except
for the effect of reflection from the critical region, the disturbances may be linearly
superimposed and the additional disturbance beneath the critical region will satisfy the

evolution equation
Pt + K2 PWIE + KPeAN*W — o2 %W joz201% — gy *Widzor? =0 (18)

where W= p,# and W is the vertical component of perturbation velocity in the horizontal
wavenumber domain. Equation (18) is for a fully compressible atmosphere and applics n
the frame of reference in which the mean wind speed is zero. In the low frequency
hydrostatic approximation which concerns us here (18) reduces to

PWozior: — kKEN?*W =0, (19)

where the Boussinesq approximation has been assumed.

We may solve (19) subject to the boundary conditions (i): W = w, exp(—iwt + ikx)
on z =0 (the ground) and (ii): perfect reflection at z = 34_/4. (1) imphes that we are
restricting consideration to sinusoidal topography, not a strong constraint since the dis-
turbance is hydrostatic. Since we are interested in growth on a slow time scale the wave
frequency w = kU = Nk/m, where m is now the vertical wavenumber and k the horizontal
wavenumber. If we transform to a new coordinate systemn in which the ground is located
at z = —d and the critical region at z_ = d/2 so that d = 4,/2 = n/m, then the solution to
the initial boundary value problem posed by Eq. (19) subject to (1) and (ii) above may be
written in the form (Landau and Lifshitz 1960; p. 62)
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w = {ar sin(mz) + b(z — 3d) cos(mz)} exp(—iwt). (20)
Substituting Eq. (20) into Eq. (19) we confirm that (20) is a solution if
iom?a + 2¢*mb =0 (21)
and if a and & are such that the lower boundary condition is satisfied. On z = —d,
sin(mz) = 0 and satisfaction of the lower boundary condition demands
b = wy/(3d). (22)
This determines the growth rate, a, of the field w uniquely from Eq. {(21) as
a = (2iw/m)b. (23)

From Eqs. (22) and (23) it is clear that the growth rate a depends upon the degree of
supercriticality of the forcing (h — h,) through w, which is the supercritical amplitude of
the vertical velocity at the lower boundary.

Inspection of Eq. (20) shows that w is not a function of time on the lower boundary
since sin(mz) = 0 there. However, this does not imply that the perturbation horizontal
velocity 1s also stationary. From the Boussinesq form of the continuity equation we have

it = —(1/ik){(Ow/0z). (24)
From Eq. 20 it therefore follows that
it = —(1/ik){mat cos(mz) — mb(z ~ 4d) sin(mz) + b cos{mz)} (25)

and on the lower boundary becomes
i'(z = —d) = (matfik + b/ik), (26)

which shows that the perturbation horizontal velocity on the surface will increase linearly
as a function of time although the vertical component of velocity remains stationary.
Thus D (0} = {p,u'w')> will also be a linearly increasing function of time and this is in
accord with the result of the numerical calculations shown in Fig. 6 for the Reynolds
stress profiles. The instability behaves in a way which is completely analogous to that of a
classical oscillator which is forced at its resonant frequency — the amplitude of the
response increases linearly with time. The few calculations discussed here serve to illus-
trate that even the simplest two-dimensional mountain wave problem exhibits extremely
interesting effects when the wave amplitude is sufficiently large. In the following section
we will proceed to analyse some of the complexities which the added complications of
three dimensionality and of structure in the mean flow can produce when they are
combined.

4. ATMOSPHERIC SHIP-WAVES: LINEAR AND NONLINEAR SIMULATIONS

Gjevik and Marthinsen (1978) and more recently Marthinsen (1980) have presented
and discussed several observations of atmospheric ship-wave patterns. Their data set will
be empioyed here to test the ability of the nonlinear numerical model to reproduce such
complex internal wave disturbances. Figure 7 displays, in (a), (b) and (¢), three of the
satellite photographs discussed in these papers and compares them in (d) with a photo-
graph of ship-waves taken from Stoker (1957, Fig. 8.2.4, page 230). Inspection of {d) shows
that the usual field of ship-waves consists of both diverging and (ransverse phase fronts.
The atmospheric observations in (b) and (¢) reveal rather pronounced diverging bow wave
patterns whereas close analysis of (a) shows a wave field dominated by the transverse
response. Our task here will be to determine whether the models discussed in section 2 are
able to reproduce these observations when they are properly initialized.

Figure 8 shows the observed wind and temperature profiles for the three observa-
tional data sets which are required for initialization. Also included on these plates are
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(a) (b)

(c) (d)

Figure 7. Satellite observations of ship-wave patierns over (a) Bear Island, 19 September 1976, (b} Jan Mayen,
8 October 1976, (¢} Jan Mayen, 1 September 1976. Plate (d) is from Stoker (1857) and shows the geometric wave
patterns generated by a ship moving through deep water.

profiles of N* and Richardson number Ri = N? (dU/dz)"%. The wind and temperature
data were obtained from upper air stations on the individual islands and (a}, (b), (¢) of Fig,
8 are the profile data for the observations in (a), (b), (¢) of Fig. 7 and are respectively from
{(a): Bear Island, 19 September 1976, 1115-1234 GgMT; (b): Jan Mayen, 8 October 1976,
11151227 gMT; (c): Jan Mayen, 1 September 1976, 1115-1220 gmr. Topographic maps
for these islands reproduced in Gjevik and Martinsen demonstrate that they may be
represented by the functional form

zx, ¥) = b*h/{(x* + b*)(y* + b} (27)
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which is of some use in the expression for the linear response since it has an analytic
wavenumber spectrum

z(k, ) = n*hb* exp{—(k + Db}. (28)

The choice h = 2277m, b ~ 7-5km provides a reasonable approximation to the topog-
raphy of Jan Mayen whereas the choice h = 300m, b = 4km is appropriate for Bear
Island.

(@) Linear response patterns in three dimensions

The observed response at Bear Island, Fig. 7(a), is dominated by the transverse
response component. Figure 9 shows the downstream wave pattern determined from the
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Figure 9. Planform of the vertical velocity perturbation computed using linear theory for the Bear Island, 19
September 1976, Plate (a) is for a height of 1700m and plate (b) for a height of 4080m. The contour interval 1s
02ms™ L.

linear response equation when the background profiles of windspeed and temperature are
employed in the calculation. These solutions are plan views of the vertical component of
the perturbation wind field (a): at the height z = 1700 m, which is the height at which the
wave amplitude is largest, and (b): at z = 4080 m. Clcarly the wave amplitude falls rapidly
with height due to the fact mentioned previously that these disturbances which are
periodic in the downstream direction are waves which are trapped in the vertical between
the ground and some overhead level of strong partial reflection. They are normal modes
of the atmosphere which have zero horizontal phase velocity. Although there is some
noise in these low resolution linear solutions (for —6km < y < 6 km) the main character-
istics of the wave field are nevertheless quite clearly revealed. The semi-wedge angle
within which the disturbance is confined is about 15° in accord with observation, and the
transverse wavelength, 2, is ~ 11 km, which also accords well with satellite observations.
It is also useful to note that if one computes the so-called Scorer parameter for this flow
from upstream wind and stability profiles using the definition §7 = N?/U? + (1/U)d*U /dz?,
it is found that §? is a decreasing function of height so that trapped lee waves would be
expected in a two-dimensional case. This criterion is therefore able to predict the appear-
ance of the transverse component of the trapped wave spectrum though it is of no use
whatever in predicting the existence of the three-dimensional diverging wave patterns
which are so prominent in Figs 7(b, ¢).
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Figure 10 shows a plan view of the response pattern predicted by linear theory for
Jan Mayen {8 October 1976 event). Figures 1{a) and {(b) show the perturbation vertical
wind field downstream of the topographic maximum for assumed topographic halfwidths
of 7-5 and 4km respectively. Both computations are for a height z = 1700 m, which is
again near the height of maximum wave amplitude. Inspection of this figure shows that
with broader topography the nature of the response is predominantly transverse whereas
with more localized topography the response field is transformed into one dominated by
the diverging wave pattern. The fact that the latter is observed on the satellite data in Fig,
7(b) indicates that the effective topographic half-width of the excitation is probably closer
to 4 than to 7-5 km. In the observation, individual wave crests make an angle of about 58°
with the wind direction and the semi-wedge angle within which the disturbance is con-
fined is about 10° to the north and nearer 23° to the south. The observed wavelength is
near 13km, The theoretically predicted wavelength from linear theory is nearer 16 km,
which is reasonable agreement considering that lengths appear foreshortened on the
satellite photographs, and the disturbance is confined to a semi-wedge angle of ~ 10° with
surfaces of constant phase making an angle of approximately 80° with the wind direction.

Figure 11 shows the vertical perturbation velocity field computed from linear theory
for the second observation at Jan Mayen (! September 1976). Figures 11(a) and (b) again
show plan views of wave amplitude at height z = 1700m for topographic half-widths of
7-5km, {a), and 4 km, (b), as in the last example. In this instance the strongly diverging
wave pattern which 1s characteristic of the response is independent of the topographic
half-width. The satellite observation (Fig. 7(c)} shows a wavelength of ~13km and a
semi-wedge angle within which the disturbance is confined of ~28°. Individual wave
crests make an angle of ~35° with the wind direction near the island but this seems to
decrease to nmearer 25° further downstream. Inspection of Fig. 11 indicates that in the
theoretical solution individual wave crests make an angle of 30°-40° with the wind
direction for b = 4km and 35°-45° with the wind direction for b = 7-5 km. The theoretical
wavelength 1s near 19 km, which differs considerably from that measured from the satellite
photograph. Again, however, the effect of foreshortening on the photograph is extreme so
that the agreement is in fact quite acceptable.

On the basis of the comparisons presented above it is quite clear that the linear
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Figure 11. Planform of the vertical velocity perturbation computed using linear theory for Jan Mayen, |
September 1976, (a) is for a topographic half-width of 7-5km; (b) for a half-width of 4km. The contour interval

is02ms™ .

theory described in section 2(b) is able to provide a reasonable quantitative simulation of
the properties of three-dimensional trapped waves excited by stratified flow over isolated
topography. It is furthermore clear on the basis of these comparisons that the geometric
wave pattern which dominates the response in such flows 1s determined by a complicated
interplay between the wavenumber spectrum of the topographic forcing and the normal
mode spectrum of the stratified waveguide itself. In the next sub-section we will employ
the nonlinear model described in section 2(a) to investigate the extent to which nonlinear
effects might be expected to alter the nature of the observed field of internal waves.

(b) Nonlinear response patterns in three dimensions

In the two numerical integrations of the full three-dimensional time-dependent non-
linear equations to be presented here, we have made explicit use of the fact that for fixed
direction of the background wind, and for symmetric topography, the hydrodynamic
solutions must be reflection symmetric across a vertical plane oriented in the direction of
the mean flow and passing through the topographic maximum. This symmetry, evident in
the previously discussed linear results, makes it possible for us to employ half the gnd-
points in the finite difference model, compared with what would otherwise be required for
a given level of resolution. In Fig. 12 we show six time-slices through the evolving
planform of the vertical velocity field at height z = 1700m. The mode] is initialized with
the wind and stability profiles corresponding to the Bear Island observations of 18 Sep-
tember 1976, on which occasion the satellite photograph showed a wave field dominated
by the transverse response component. The numerical model employed 42 gridpoints in
the vertical, 96 gridpoints in the downstream direction, and 28 in the cross-stream direc-
tion. The individual time frames in Fig. 12 are separated by 20min intervals so that the
complete sequence covers a two-hour period. Inspection of this figure shows very nicely
the manner in which the transverse normal mode is set up as time progresses by the
process of successive partial reflection of the internal waves in the body of the fluid and
total reflection at the ground. The model topography employed in this calculation was
precisely the same as that used for the linear solution shown in Fig. 9(a). |

Comparing the maximum amplitudes in the first three half wavelengths of the nonlin-
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ear wave with the corresponding amplitudes obtained from linear theory, the former are
(—ims™ %, +2ms” ', —2ms~!) whereas the latter are (—0-6ms~', +12ms %,
—1ms™'). Clearly then the amplitude of the nonlinear wave is approximately 100%
higher than that predicted by linear theory. This is similar to the result for two-
dimensional disturbances found in Peltier and Clark (1979). The reason why linear theory
may severely underestimate wave amplitude is that it may effectively employ, through use
of the linearized bottom boundary condition, an effective topography which is consider-
ably lower than h. The error is large when the Froude number near the ground (Fr =
AN/U ) is of the order one or greater. Physically this number is just the ratio of the
maximum topographic height to the hydrostatic vertical wavelength of the internal waves.
Even though the topographic height for the flow over Bear Island is rather modest
(300m), Fr is nevertheless large due to the relatively high stability and low wind speed at
the surface. Linear theory is therefore severely in error insofar as the predicted wave
amplitudes are concerned but it nevertheless predicts wavephase and wavelength rather
well.

In Fig. 13 we show a sequence of vertical cross-sections through the evolving vertical
velocity field. This representation of the set up of the three-dimensional trapped wave is
very similar to Fig. 23 of Peltier and Clark (1979) showing the same phenomenon in two
dimensions. These cross-sections are coincident with the plane of mirror symmetry. Suc-
cessive downstream phases of the trapped wave are set up as time progresses. An impor-
tant problem is revealed in these sections which is frequently encountered in the
numerical simulation of wave mechanical processes such as those reported here. Visible in
the upper third of the domain interior are a sequence of numerical images of the physical
trapped wave which is entirely confined to the lower levels of the fluid flow. The upper-
level disturbances are produced by the reflection of upward propagating internal wave
disturbances at the overhead boundary of the numerical domain. Their vertical extent is
on the order of the thickness of the region of high viscosity which we employ to absorb
these incident waves. This region of viscous absorption was not particularly effective in
the present case because the vertical wavelength of the waves in the upper levels was quite
large. In spite of this difficulty, however, the region of the flow which was of physical
interest was not visibly disturbed. We found this problem to be extremely pronounced in
our attempt to reproduce the observations for 8 October at Jan Mayen. In this case we
were unabie to afford (because of restricted machine memory) to include in the model the
number of vertical levels which would be necessary to prevent contamination of the
interior solution by reflections from the overhead boundary. Inspection of Fig. 8(b) shows
why this problem was encountered. Because of the high value of the wind speed in the
capping layer (~32ms ') the effective hydrostatic wavelength, U/N, was so large that an
extremely thick absorber would have been required to do an effective job in absorbing the
incident wave.

This problem was not found to be too severe for the Jan Mayen data on 1 September
1976 because the relatively short vertical wavelength of the waves incident upon the
viscous absorber (due to the differing wind and stability profiles) made this region rather
more effective. Figure 14 shows a sequence of equispaced time-slices through the evolving
planform of the vertical motion field for our nonlinear time-dependent solution at height
z = 1700 m, which may be compared directly with the equivalent linear solution shown in
Fig. 11{a). The agreement between these two solutions is rather good for wavephase and
wavelength as the nonlinear model produces a strongly diverging wave response with no
hint at all of the transverse component. Comparing Figs. 16(b) and (c) it will be observed
that the latter has the topography maximum shifted upstream from its location mn the

former. In fact the solution in (b) was used to initialize a new model with offset topog-
raphy in order that we might observe the downstream development of the field of diverg-
ing waves under conditions which minimize the effects of boundary proximity. Comparing
the amplitude of the nonlinear wave with its linear counterpart we obtain (—6-4ms™*,

+3ms- Y, —06ms }) for the maximum amplitude in the first three half wave lengths of

*
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the latter and (—8ms~ !, +3ms™ % —1ims™ ') for the former. Here then, in contrast to
the result obtained for the transverse wave observed in the lee of Bear Island, the lincar
and nonlinear amplitudes are in quite close agreement. This 1s 1n spite of the fact that the
maximum topography of Jan Mayen {~2-28 km) is very much in excess of that of Bear
Island (~300m). Again the reason for the good fit in this case 1s to be found in the rather
small value of the Froude number Fr = AN/U_ which obtains (by inspection of Fig. 10{c)}
because of the small value of N in the near-surface region.

5. CONCLUSIONS

The set of two-dimensional experiments described in section 3 for stratified flow with
constant Brunt-Vaisidld frequency N and wind speed U have strongly reinforced our
opinion, that wave breaking has an important impact on the evolution of the standing
wave field over isolated topography. Even in this simplest possible two-dimensional case
it has been shown that when the standing wave exceeds the critical steepness the wave
begins to amplify in the cavity which forms between the level of supercritical steepening
and the earth’s surface, By this process downslope wind speeds in the lee of the topo-
graphic maximum may reach values several times greater than those which would be
predicted by a steady state model of the type introduced by Long. As suggested in Peltier
and Clark (1979), we believe that this new mechanism may play an important role in the
formation of severe downslope windstorms. The data collected during the course of the
ALPEX experiment may help to confirm or to deny this hypothesis.

The sequence of comparisons of linear and nonlinear calcuiations for three-
dimensional flow over isolated topography has served as a very useful check on the design
of the three-dimensional numerical model. Both models, linear and nonlinear, were able
to reproduce quite accurately the ship-wave paiterns observed in the satellite photo-
graphs. The geometrical form of the ship-wave pattern may be dominantly transverse or
dominantly divergent; which of these patterns actually appears involves a complex inter-
action between the normal mode spectrum of the waveguide and the spectrum of the
topographic forcing. A prediction of the expected response cannot be made purely on the
basis of a wave kinematic analysis of the type described in Gjevik and Marthinsen (1978)
based on the dispersion relatton for the background state. Our linear calculations for the 8
October 1976 observations at Jan Mayen, for example, show quite clearly that the nature
of the response may change quite dramatically when the topographic half-width 1s
changed only slightly while the mean flow 1s kept the same. This is not unexpected.
Companisons of the linear and nonlinear results also demonstrated that the validity of
iinear theory essentially depends upon the ratio of the topographic height, h, to the
hydrostatic wavelength, U/N, as is found to be the case for two-dimensional flows.
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